Sains Malaysiana 54(7)(2025): 1713-1723
http://doi.org/10.17576/jsm-2025-5407-06
Pencerapan dan Analisis Fenomena
Pembunuhan Klonal Escherichia coli
atas Medium Pertumbuhan Minimum
Tertakrif Berbanding dengan Medium Kaya
(Observation and Analysis of Escherichia
coli Clonal Killing Phenomenon on Defined Minimal Growth Medium Compared to
Rich Medium)
FOO PEI YA1, NAZALAN NAJIMUDIN2,
PRAVIN KUMRAN NYANASEGRAN3 & NG CHYAN LEONG3,*
1Department of Biological Sciences
and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2School of Biological Sciences,
Universiti Sains Malaysia, 11700 Gelugor, Penang, Malaysia
3Institute of Systems Biology
(INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan:
9 September 2024/Diterima: 23 Mei 2025
Abstrak
Bakteria
menggunakan komunikasi kimia yang rumit yang melibatkan tingkah laku kerjasama
dan persaingan demi kelangsungan hidup dalam menghadapi keadaan yang mencabar.
Kajian terdahulu telah melaporkan bahawa dalam persekitaran kekurangan nutrien,
bakteria menunjukkan tingkah laku radikal, termasuk rembesan sebatian
antimikrob. Sebatian ini tidak hanya memberi kesan kepada strain bakteria yang
berkaitan tetapi juga koloni klon, membawa kepada fenomena yang dikenali
sebagai pembunuhan klon. Namun, fenomena pembunuhan klon pada medium minimum
masih kurang dikaji. Penyelidikan ini mengkaji persaingan antara dua koloni
klon Escherichia coli ATCC 25922 (EC 25922) pada media kompleks (LB) dan
media minimum (M9). Seterusnya, fenomena pembunuhan klon diperhatikan dan
dianalisis. Hasil menunjukkan bahawa koloni yang menghadap ke luar (EC-Out)
menunjukkan kadar pertumbuhan yang lebih tinggi daripada koloni yang menghadap
ke dalam (EC-In). Pada kedua-dua agar media LB dan M9, koloni klon EC
25922 menunjukkan kesan penindasan oleh koloni bersebelahan dan
menghasilkan zon perencatan antara dua koloni. Pembentukan zon perencatan
berlaku lebih cepat pada agar LB berbanding agar M9 dan mungkin disebabkan oleh
faktor yang dirembeskan yang menghalang penggabungan koloni. Pembentukan zon
perencatan juga bergantung pada jarak pemisahan awal antara koloni klon. Strain
EC 25922 yang sama tidak dapat tumbuh apabila diinokulasikan dalam zon
perencatan, menunjukkan kehadiran perencat persaingan. Penemuan ini
mencadangkan bahawa sintesis faktor antimikrob serta ketersediaan nutrien
mungkin mempengaruhi perkembangan biofilem dan corak pertumbuhan populasi
bakteria klon di dalamnya. Pemahaman dalam pembunuhan klon boleh membantu penemuan
antibiotik baharu dan meningkatkan pengetahuan mengenai daya tahan bakteria
dalam keadaan yang buruk.
Kata kunci: Escherichia
coli ATCC 25922; pembunuhan klon; perencatan pertumbuhan; sebatian
antimikrob; tekanan nutrien
Abstract
Bacteria employ intricate chemical
communication involving both cooperative and competitive behaviours for
survival when living in harsh conditions. Previous studies have reported that
in a nutrient deprivation environment, bacteria exhibit radical behaviours,
including antimicrobial compound secretion. These compounds affect not only
related bacterial strains but also sibling clonal cells, leading to the
phenomenon known as clonal killing. However, the clonal killing phenomenon on
minimal medium remains underexplored. This study investigates competition
between two Escherichia coli ATCC 25922 (EC 25922) clonal colonies on
rich media (LB) and minimal media (M9). Subsequently, the clonal killing
phenomenon was observed and analysed. The results indicated that colonies
facing outward (EC-Out) exhibited higher growth rates than colonies
facing inward (EC-In). On both LB and M9 media, EC 25922 clonal colonies
demonstrated suppression exerted by the neighbouring colony and produced a zone
of inhibition between the two colonies. This zone of inhibition formed more
rapidly on LB agar than M9 agar and is possibly due to secreted factor(s) that prevent
colonies from merging. The inhibition zone formation also depended on the
initial separation distance between the clonal colonies. The same strain of EC
25922 was unable to grow when inoculated within the zone of inhibition,
indicating the presence of a competitive inhibitor. These findings suggest that
the synthesis of antimicrobial factors and nutrient availability may affect biofilm
development and the growth pattern of clonal bacterial population inside them. Understanding
clonal killing could help find new antibiotics and improve our knowledge of bacterial
resilience under unfavourable conditions.
Keywords: Antimicrobial compounds;
clonal killing; Escherichia coli ATCC 25922; growth inhibition; nutrient
stress
RUJUKAN
Adler,
J. 1973. A method for measuring chemotaxis and use of the method to determine
optimum conditions for chemotaxis by Escherichia coli. Journal of
General Microbiology 74(1): 77-91.
Adler,
J. 1966. Chemotaxis in bacteria. Science 153(3737): 708-716.
Alves,
C.S., Melo, M.N., Franquelim, H.G., Ferre, R., Planas, M., Feliu, L., Bardají,
E., Kowalczyk, W., Andreu, D., Santos, N.C., Fernandes, M.X. & Castanho,
M.A.R.B. 2010. Escherichia coli cell surface perturbation and disruption
induced by antimicrobial peptides BP100 and pepR. Journal of Biological
Chemistry 285(36): 27536-27544.
Baev, M.V., Baev, D., Radek, A.J. & Campbell, J.W. 2006.
Growth of Escherichia coli MG1655 on LB medium: Monitoring utilization
of sugars, alcohols, and organic acids with transcriptional microarrays. Applied
Microbiology and Biotechnology 71(3): 310-316.
Baquero,
F., Lanza, V.F., Baquero, M.R., del Campo, R. & Bravo-Vázquez, D.A. 2019.
Microcins in Enterobacteriaceae: Peptide antimicrobials in the eco-active
intestinal chemosphere. Frontiers in Microbiology 10: 2261.
Be’er,
A. & Ariel, G. 2019. A statistical physics view of swarming bacteria. Movement
Ecology 7(1): 9.
Be’er,
A., Zhang, H.P., Florin, E.L., Payne, S.M., Ben-Jacob, E. & Swinney, H.L.
2009. Deadly competition between sibling bacterial colonies. Proceedings of
the National Academy of Sciences 106(2): 428-433.
Budič,
M., Rijavec, M., Petkovšek, Ž. & Žgur-Bertok, D. 2011. Escherichia coli bacteriocins: Antimicrobial efficacy and prevalence among isolates from
patients with bacteraemia. PLoS ONE 6(12): e28769.
Cascales,
E., Buchanan, S.K., Duché, D., Kleanthous, C., Lloubès, R., Postle,
K., Riley, M., Slatin, S. & Cavard, D. 2007. Colicin biology. Microbiology
and Molecular Biology Reviews 71(1): 158-229.
Corning,
P.A. 2022. A systems theory of biological evolution. Biosystems 214:
104630.
dos
Santos, A.L.S., Galdino, A.C.M., de Mello, T.P., de Souza Ramos, L.,
Branquinha, M.H., Bolognese, A.M., Columbano Neto, J. & Roudbary, M. 2018.
What are the advantages of living in a community? A microbial biofilm
perspective! Memórias do Instituto Oswaldo Cruz 113(9): e180212.
Elbing, K.L. &
Brent, R. 2019. Recipes and tools
for culture of Escherichia coli. Current Protocols in Molecular
Biology 125(1): e83.
Flemming,
H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. & Kjelleberg,
S. 2016. Biofilms: An emergent form of bacterial life. Nature Reviews
Microbiology 14(9): 563-575.
Gibbs,
K.A., Urbanowski, M.L. & Greenberg, E.P. 2008. Genetic determinants of self
identity and social recognition in bacteria. Science 321(5886): 256-259.
Grafen,
A. 1986. Natural selection, kin selection and group selection. Behavioural
Ecology: An Evolutionary Approach.
Hall-Stoodley,
L., Costerton, J.W. & Stoodley, P. 2004. Bacterial biofilms: from the natural
environment to infectious diseases. Nature Reviews Microbiology 2(2): 95-108.
Mavridou,
D.A.I., Gonzalez, D., Kim, W., West, S.A. & Foster, K.R. 2018. Bacteria use
collective behavior to generate diverse combat strategies. Current Biology 28(3): 345-355.e4.
Ng,
F.L. 2019. Clonal interaction between Escherichia coli ATCC 25922 colonies.
PhD Thesis. Universiti Sains Malaysia.
Niehus,
R., Oliveira, N.M., Li, A., Fletcher, A.G. & Foster, K.R. 2021. The
evolution of strategy in bacterial warfare via the regulation of bacteriocins
and antibiotics. eLife 10: e69756.
Paul, R., Ghosh, T., Tang,
T. & Kumar, A. 2019. Rivalry in Bacillus
subtilis colonies: Enemy or family? Soft Matter 15(27): 5400-5411.
Platt,
T.G. & Bever, J.D. 2009. Kin competition and the evolution of cooperation. Trends
in Ecology & Evolution 24(7): 370-377.
Portell,
X., Pot, V., Garnier, P., Otten, W. & Baveye, P.C. 2018. Microscale heterogeneity
of the spatial distribution of organic matter can promote bacterial
biodiversity in soils: Insights from computer simulations. Frontiers in Microbiology 9: 1583.
Prigent-Combaret, C.,
Vidal, O., Dorel, C. & Lejeune, P. 1999. Abiotic surface sensing and biofilm-dependent
regulation of gene expression in Escherichia coli. Journal of Bacteriology 181(19): 5993-6002.
Ratiu,
I.A., Ligor, T., Bocos-Bintintan, V., Al-Suod, H., Kowalkowski, T.,
Rafińska, K. & Buszewski, B. 2017. The effect of growth medium on an Escherichia
coli pathway mirrored into GC/MS profiles. Journal of Breath Research 11(3): 036012.
Schneider,
C.A., Rasband, W.S. & Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of
image analysis. Nature Methods 9(7): 671-675.
Serra,
D.O., Richter, A.M. & Hengge, R. 2013. Cellulose as an architectural
element in spatially structured Escherichia coli biofilms. Journal of
Bacteriology 195(24): 5540-5554.
Sezonov,
G., Joseleau-Petit, D. & D’Ari, R. 2007. Escherichia coli physiology in
Luria-Bertani broth. Journal of Bacteriology 189(23): 8746-8749.
Soares, A., Gomes,
L.C., Monteiro, G.A. & Mergulhão, F.J. 2021. The influence of nutrient medium composition on Escherichia coli biofilm development and heterologous protein expression. Applied Sciences 11(18): 8667.
Sperotto,
G., Stasiak, L.G., Godoi, J.P.M.G., Gabiatti, N.C. & De Souza, S.S. 2021. A
review of culture media for bacterial cellulose production: Complex, chemically
defined and minimal media modulations. Cellulose 28(5): 2649-2673.
Tso, W.W. & Adler, J.
1974. Negative chemotaxis in Escherichia coli. Journal of Bacteriology 118(2): 560-576.
Valero, P., Giannakis, S.,
Mosteo, R., Ormad, M.P. & Pulgarin, C. 2017. Comparative effect of growth media on the
monitoring of E. coli inactivation and regrowth after solar and
photo-Fenton treatment. Chemical Engineering Journal 313: 109-120.
Varik,
V., Oliveira, S.R.A., Hauryliuk, V. & Tenson, T. 2016. Composition of the
outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of
stringent and relaxed Escherichia coli. Scientific Reports 6(1):
22308.
Wade,
M.J. 1985. Soft selection, hard selection, kin selection, and group selection. The
American Naturalist 125(1): 61-73.
Wang,
C.H. & Koch, A.L. 1978. Constancy of growth on simple and complex media. Journal
of Bacteriology 136(3): 969-975.
Williams,
P. 2007. Quorum sensing, communication and cross-kingdom signalling in the
bacterial world. Microbiology 153(12): 3923-3938.
Xavier,
J.B. & Foster, K.R. 2007. Cooperation and conflict in microbial biofilms. Proceedings
of the National Academy of Sciences 104(3): 876-881.
Zhao,
X., Yu, Z. & Ding, T. 2020. Quorum-sensing regulation of antimicrobial
resistance in bacteria. Microorganisms 8(3): 425.
*Pengarang
untuk surat-menyurat; email: clng@ukm.edu.my